跳转到主要內容

第10章

作者:容与
并且,這個极限既不依赖于测量粒子位置和速度的方法,也不依赖于粒子的种类。海森堡不确定性原理是世界的一個基本的不可回避的性质。

  不确定性原理对我們世界观有非常深远的影响。甚至到了50多年之后,它還不为许多哲学家所鉴赏,仍然是许多争议的主题。不确定性原理使拉普拉斯科学理论,即一個完全宿命论的宇宙模型的梦想寿终正寝:如果人们甚至不能准确地测量宇宙的现在的态,就肯定不能准确地预言将来的事件了!我們仍然可以想像,对于一些超自然的生物,存在一组完全地决定事件的定律,這些生物能够不干擾宇宙地观测它现在的状态。然而,对于我們這些芸芸众生而言,這样的宇宙模型并沒有太多的兴趣。看来,最好是采用称为奥铿剃刀的经济学原理,将理论中不能被观测到的所有特征都割除掉。20世纪20年代。在不确定性原理的基础上,海森堡、厄文·薛定谔和保尔·狄拉克运用這种手段将力学重新表达成称为量子力学的新理论。在此理论中,粒子不再有分别被很好定义的、能被同时观测的位置和速度,而代之以位置和速度的结合物的量子态。

  一般而言,量子力学并不对一次观测预言一個单独的确定结果。代之,它预言一组不同的可能发生的结果,并告诉我們每個结果出现的概率。也就是說,如果我們对大量的类似的系统作同样的测量,每一個系统以同样的方式起始,我們将会找到测量的结果为a出现一定的次数,为b出现另一不同的次数等等。人们可以预言结果为a或b的出现的次数的近似值,但不能对個别测量的特定结果作出预言。因而量子力学为科学引进了不可避免的非预见性或偶然性。尽管爱因斯坦在发展這些观念时起了很大作用,但他非常强烈地反对這些。他之所以得到诺贝尔奖就是因为对量子理论的贡献。即使這样,他也从不接受宇宙受机遇控制的观点;他的感觉可表达成他著名的断言:“上帝不玩弄骰子。”然而,大多数其他科学家愿意接受量子力学,因为它和实验符合得很完美。它的的确确成为一個极其成功的理论,并成为几乎所有现代科学技术的基础。它制约着晶体管和集成电路的行为,而這些正是电子设备诸如电视、计算机的基本元件。它并且是现代化学和生物学的基础。物理科学未让量子力学进入的唯一领域是引力和宇宙的大尺度结构。

  虽然光是由波组成的,普郎克的量子假设告诉我們,在某些方面,它的行为似乎显现出它是由粒子组成的——它只能以量子的形式被发射或吸收。同样地,海森堡的不确定性原理意味着,粒子在某些方面的行为像波一样:它们沒有确定的位置,而是被“抹平”成一定的几率分布。量子力学的理论是基于一個全新的数学基础之上,不再按照粒子和波动来描述实际的世界;而只不過利用這些术语,来描述对世界的观测而已。所以,在量子力学中存在着波动和粒子的二重性:为了某些目的将波动想像成为粒子是有助的,反之亦然。這导致一個很重要的后果,人们可以观察到两组波或粒子的所谓的干涉,也就是一束波的波峰可以和另一束波的波谷相重合。這两束波互相抵消,而不是像人们预料的那样,迭加在一起形成更强的波(图)。一個熟知的光的干涉的例子是,肥皂泡上经常能看到颜色。這是因为从形成泡沫的很薄的水膜的两边反射回来的光互相干涉而引起的。白光含有所有不同波长或颜色的光波,从水膜一边反射回来的具有一定波长的波的波峰和从另一边反射的波谷相重合时,对应于此波长的颜色就不在反射光中出现,所以反射光就显得五彩缤纷。

  图

  由于量子力学引进的二重性,粒子也会产生干涉。一個著名的例子即是所谓的双缝实验(图)。一個带有两個平行狭缝的隔板,在它的一边放上一個特定颜色(即特定波长)的光源。大部分光都射在隔板上,但是一小部分光通過這两條缝。现在假定将一個屏幕放到隔板的另一边。屏幕上的任何一点都能接收到两個缝来的波。然而,一般来說,光从光源通過這两個狭缝传到屏幕上的距离是不同的。這表明,从狭缝来的光到达屏幕之时不再是同位相的:有些地方波动互相抵消,其他地方它们互相加强,结果形成有亮暗條纹的特征花样。

  图

  非常令人惊异的是,如果将光源换成粒子源,譬如具有一定速度(這表明其对应的波有同样的波长)的电子束,人们得到完全同样类型的條纹。這显得更为古怪,因为如果只有一條裂缝,则得不到任何條纹,只不過是电子通過這屏幕的均匀分布。人们因此可能会想到,另开一條缝只不過是打到屏幕上每一点的电子数目增加而已。但是,实际上由于干涉,在某些地方反而减少了。如果在一個时刻只有一個电子被发出通過狭缝,人们会以为,每個电子只穿過其中的一條缝,這样它的行为正如同另一個狭缝不存在时一样——屏幕会给出一個均匀的分布。然而,实际上即使电子是一個一個地发出,條纹仍然出现,所以每個电子必须在同一时刻通過两個小缝!

  粒子间的干涉现象,对于我們理解作为化学和生物以及由之构成我們和我們周围的所有东西的基本单元的原子的结构是关键的。在本世纪初,人们认为原子和行星绕着太阳公转相当类似,在這儿电子(带负电荷的粒子)绕着带正电荷的中心的核转动。正电荷和负电荷之间的吸引力被认为是用以维持电子的轨道,正如同行星和太阳之间的万有引力用以维持行星的轨道一样。麻烦在于,在量子力学之前,力学和电学的定律预言,电子会失去能量并以螺旋线的轨道落向并最终撞击到核上去。這表明原子(实际上所有的物质)都会很快地坍缩成一种非常紧密的状态。丹麦科学家尼尔斯·玻尔在1913年,为此問題找到了部分的解答。他认为,也许电子不能允许在离中心核任意远的地方,而只允许在一些指定的距离处公转。如果我們再假定,只有一個或两個电子能在這些距离上的任一轨道上公转,那就解决了原子坍缩的問題。因为电子除了充满最小距离和最小能量的轨道外,不能进一步作螺旋运动向核靠近。

  对于最简单的原子——氢原子,這個模型给出了相当好的解释,這儿只有一個电子绕着氢原子核运动。但人们不清楚如何将其推广到更复杂的原子去。并且,对于可允许轨道的有限集合的思想显得非常任意。量子力学的新理论解决了這一困难。原来一個绕核运动的电荷可看成一种波,其波长依赖于其速度。对于一定的轨道,轨道的长度对应于整数(而不是分数)倍电子的波长。对于這些轨道,每绕一圈波峰总在同一位置,所以波就互相迭加;這些轨道对应于玻尔的可允许的轨道。然而,对于那些长度不为波长整数倍的轨道,当电子绕着运动时,每個波峰将最终被波谷所抵消;這些轨道是不能允许的。

  美国科学家裡查德·费因曼引入的所谓对歷史求和(即路径积分)的方法是一個波粒二像性的很好的摹写。在這方法中,粒子不像在经典亦即非量子理论中那样,在时空中只有一個歷史或一個轨道,而是认为从a到b粒子可走任何可能的轨道。对应于每個轨道有一对数:一個数表示波的幅度;另一個表示在周期循环中的位置(即相位)。从a走到b的几率是将所有轨道的波加起来。一般說来,如果比较一族邻近的轨道,相位或周期循环中的位置会差别很大。這表明相应于這些轨道的波几乎都互相抵消了。然而,对于某些邻近轨道的集合,它们之间的相位沒有很大变化,這些轨道的波不会抵消。這种轨道即对应于玻尔的允许轨道。

  用這些思想以具体的数学形式,可以相对直截了当地计算更复杂的原子甚至分子的允许轨道。分子是由一些原子因轨道上的电子绕着不止一個原子核运动而束缚在一起形成的。由于分子的结构,以及它们之间的反应构成了化学和生物的基础,除了受测不准原理限制之外,量子力学在原则上允许我們去预言围绕我們的几乎一切东西。(然而,实际上对一個包含稍微多几個电子的系统所需的计算是如此之复杂,以至使我們做不到。)

  看来,爱因斯坦广义相对论制约了宇宙的大尺度结构,它仅能称为经典理论,因其中并沒有考虑量子力学的不确定性原理,而为了和其他理论一致這是必须考虑的。這個理论并沒导致和观测的偏离是因为我們通常经验到的引力场非常弱。然而,前面讨论的奇点定理指出,至少在两种情形下引力场会变得非常强——黑洞和大爆炸。在這样强的场裡,量子力学效应应该是非常重要的。因此,在某种意义上,经典广义相对论由于预言无限大密度的点而预示了自身的垮台,正如同经典(也就是非量子)力学由于隐含着原子必须坍缩成无限的密度,而预言自身的垮台一样。我們還沒有一個完整、协调的统一广义相对论和量子力学的理论,但我們已知這理论所应有的一系列特征。在以下几章我們将描述黑洞和大爆炸的量子引力论效应。然而,此刻我們先转去介绍人类的许多新近的尝试,他们试图对自然界中其他力的理解合并成一個单独的统一的量子理论。

  第五章基本粒子和自然的力

  亚裡士多德相信宇宙中的所有物质是由四种基本元素即土、空气、火和水组成的。

  :https://www.bie5.cc。:https://m.bie5.cc

首頁 分類 排行 書架 我的

看小說網

看小說網是您最喜歡的免費小說閱讀網站。提供海量全本小說免費閱讀,所有小說無廣告干擾,是您值得收藏的小說網站。

網站导航

热门分類

© 2023 看小說網 版权所有